|本期目录/Table of Contents|

[1]韩 流,刘紫妍,王锐佳,等.液体聚丁二烯橡胶对顺丁橡胶/天然橡胶共混胶加工性能及抗疲劳性能的影响[J].合成橡胶工业,2022,2:100-105.
 HAN Liu,LIU Zi-yan,WANG Rui-jia,et al.Effect of liquid polybutadiene rubber on processability and fatigue resistance of cis-1,4-butadiene rubber /natural rubber blends[J].China synthetic rubber industy,2022,2:100-105.
点击复制

液体聚丁二烯橡胶对顺丁橡胶/天然橡胶共混胶加工性能及抗疲劳性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年2期
页码:
100-105
栏目:
出版日期:
2022-03-15

文章信息/Info

Title:
Effect of liquid polybutadiene rubber on processability and fatigue resistance of cis-1,4-butadiene rubber /natural rubber blends
作者:
韩 流刘紫妍王锐佳冯 强
青岛科技大学 高分子科学与工程学院, 山东 青岛 266000
Author(s):
HAN Liu LIU Zi-yan WANG Rui-jia FENG Qiang
School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
关键词:
液体聚丁二烯橡胶顺丁橡胶天然橡胶共混胶加工性能抗疲劳性能
Keywords:
liquid polybutadiene rubber cis-14-polybutadiene rubber natural rubber blend processability fatigue resistance
分类号:
TQ 333.2
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.02.0100
文献标识码:
B
摘要:
考察了液体聚丁二烯橡胶Activ-50对顺丁橡胶(BR)/天然橡胶(NR)共混胶加工性能及抗疲劳性能的影响,并采用裂纹增长测试平台结合有限元ABAQUS/CAE,从疲劳裂纹扩展角度对硫化胶的抗疲劳性能进行了考察。结果表明,Activ-50能够降低混炼胶的储能模量和黏度,橡胶共混过程中加入Activ-50能改善体系的加工性能。加入2份和4份Activ-50能降低裂纹的生长速率,当继续加大Activ-50用量会导致开裂加快。加入适量的Activ-50可改善BR/NR共混胶的加工性能,提高抗疲劳性能。
Abstract:
Effects of liquid polybutadiene rubber activity-50 on the processability and fatigue resistance of cis-1,4-polybutadiene rubber (BR)/natural rubber (NR) blends were investigated. The fatigue resistance of vulcanizates was investigated from the perspective of fatigue crack propagation using crack growth test platform and finite element ABAQUS/CAE. The results showed that activity-50 could reduce the storage modulus and viscosity of the rubber blend, and the addition of activity-50 in the rubber blending process could improve the processability of the system. Adding 2 phr and 4 phr of active-50 could reduce the crack growth rate. When the amount of active-50 continued to increase, the crack would accelerate. Adding an appropriate amount of activity-50 could improve the processability and fatigue resistance of BR/NR blend.

参考文献/References

[1] Gadgeel A A, Mhaske S T. Morphological properties, rheological behaviors, and phase interaction of nylon 11/polypropylene blends by in situ reactive compatibilization and dispersion through polyhydroxybutyrate[J]. Journal of Applied Polymer Science,2021,138(4):49728.
[2] Robeson L M. Polymer blends: A comprehensive review[J]. Polymer Blends (A): Comprehensive Review,2007,18(1):109-168.
[3] Feldman D. Polyblend compatibilization[J]. Journal of Macromolecular Science(Part A): Chemistry,2007,42(5):587-605.
[4] Galloway J A, Jeon H K, Bell J R, et al. Block copolymer compatibilization of cocontinuous polymer blends[J]. Polymer,2005,46(1):183-191.
[5] Bualek S, Ikeda Y, Kohjiya S, et al. Natural rubber and butadiene rubber blend using diblock copolymer of isoprene-butadiene as compatibilizer[J]. Journal of Applied Polymer Science,1993,49(5):807-814.
[6] Zanzig D J, Magnus F L, Hsu W L, et al. IBR block copolymers as compatibilizers in NR/BR blends[J]. Rubber Che-mistry and Technology,1993,66(4):538-549.
[7] Datta J, Parcheta P. A comparative study on selective properties of Kraft lignin-natural rubber composites containing diffe-rent plasticizers[J]. Iranian Polymer Journal,2017,26(6):453-466.
[8] 梁滔,魏绪玲,龚光碧. 液体橡胶的研究进展(Ⅲ):液体丁腈橡胶、液体丁苯橡胶和液体异戊二烯橡胶[J].合成橡胶工业,2011,34(5):398-404.
[9] Soares B G, Silva A A, Lima V D, et al. Toughened epoxy‐liquid polybutadiene networks cured with anhydride with outstanding thermal and mechanical properties[J]. Journal of Applied Polymer Science,2021,138(14):50175.
[10] Shafik E S, Rozik N N, Younan A F, et al. Novel plasticizer for acrylonitrile butadiene rubber (NBR) and its effect on physico-mechanical and electrical properties of the vulcanizates[J]. Bulletin of Materials Science,2020,43(1):1-8.
[11] Minoura Y, Yamashita S, Okamoto H, et al. Crosslinking and mechanical property of liquid rubber(II): Curative effect of aromatic diols[J]. Journal of Applied Polymer Science,2010,22(11):3101-3110.
[12] 柏海见,陈继明,齐永新,等. 四羟基聚丁二烯的合成及其改性端羟基聚丁二烯液体橡胶的力学性能[J].合成橡胶工业,2011,34(4):259-262.
[13] Fetters L J, Lohse D J, Richter D, et al. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties[J]. Macromolecules,1994,27(17):4639-4647.
[14] Wang Jian, Lu Yuyuan, Xu Yuci, et al. Effects of block copolymer compatibilizers on phase behavior and interfacial properties of incompatible homopolymer composites[J]. Acta Polymerica Sinica, 2016(3):271-287.
[15] Weng Gengsheng, Yao Hong, Chang Aijun, et al. Crack growth mechanism of natural rubber under fatigue loading stu-died by a real-time crack tip morphology monitoring method[J]. RSC Advances, 2014, 4(83):43942-43950.
[16] Rivlin R S, Thomas A G. Rupture of rubber(I): Characteristic energy for tearing[J]. Journal of Polymer Science,1953,10(3):291-318.
[17] Gent A N, Lindley P B, Thomas A G. Cut growth and fatigue of rubbers(I): The relationship between cut growth and fatigue[J]. Journal of Applied Polymer Science,1964,8(1):455-466.
[18] Lake G J, Lindley P B. Cut growth and fatigue of rubbers(Ⅱ): Experiments on a noncrystallizing rubber[J]. Journal of Applied Polymer Science,1964,8(2):707-721.
[19] 黄舟,项可璐,杨磊,等. 少量不同填料对炭黑/丁苯橡胶复合材料抗疲劳破坏性能的影响及其机理[J]. 合成橡胶工业,2013,36(4):268-273.
[20] Zine A, Benseddiq N, Abdelaziz M N. Rubber fatigue life under multiaxial loading: Numerical and experimental investigations[J]. International Journal of Fatigue,2011,33(10):1360-1368.
[21] A literature survey on fatigue analysis approaches for rubber[J]. International Journal of Fatigue,2002,24(9):949-961.
[22] Greensmith H W. Rupture of rubber(XI): Tensile rupture and crack growth in a noncrystallizing rubber[J]. Journal of Applied Polymer Science,1964,8(3):1113-1128.
[23] 雍占福. 磁流变弹性体的制备与疲劳断裂机理研究[D]. 青岛:青岛科技大学,2018.
[24] Liu Yanpeng, Weng Gengsheng, Yao Hong, et al. Crack growth mechanism of natural rubber/butadiene rubber blend under fatigue loading[J]. Polymer Materials Science & Engineering, 2015, 31(3):81-87.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51972185)。
更新日期/Last Update: 2022-03-15