|本期目录/Table of Contents|

[1]黄 锴,杨海波,田 明,等.硅橡胶复合材料的多轴疲劳寿命计算及优化设计[J].合成橡胶工业,2022,2:85-90.
 HUANG Kai,YANG Hai-bo,TIAN Ming,et al.Multiaxial fatigue life calculation and optimal design of silicone rubber composites[J].China synthetic rubber industy,2022,2:85-90.
点击复制

硅橡胶复合材料的多轴疲劳寿命计算及优化设计(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年2期
页码:
85-90
栏目:
出版日期:
2022-03-15

文章信息/Info

Title:
Multiaxial fatigue life calculation and optimal design of silicone rubber composites
作者:
黄 锴杨海波田 明张立群
北京化工大学 材料科学与工程学院/先进弹性体材料研究中心, 北京 100029
Author(s):
HUANG Kai YANG Hai-bo TIAN Ming ZHANG Li-qun
School of Materials Science and Engineering/Advanced Elastomer Materials Research Center, Beijing University of Chemical Technology, Beijing 100029, China
关键词:
硅橡胶复合材料疲劳寿命有限元数值模拟裂纹扩展优化设计
Keywords:
silicone rubber composite fatigue life finite element numerical simulation crack pro-pagation optimal design
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.02.0085
文献标识码:
A
摘要:
基于裂纹扩展理论,采用Python语言开发了橡胶的多轴疲劳寿命算法并进行了试验验证,并计算了硅橡胶哑铃形单轴拉伸试样、平面拉伸试样及十字形等双轴拉伸试样的疲劳寿命;为兼顾硅橡胶复合材料的发电性能和疲劳寿命,采用总能量密度(PI)来评估复合材料的综合性能。结果表明,通过PI评估发现,等双轴拉伸下应变能密度(W)最大,开裂能密度与W的比值最小,硅橡胶在等双轴拉伸下可能具有最佳的综合性能。
Abstract:
Based on the crack propagation theory, the multiaxial fatigue life algorithm of rubber was developed using Python language and verified by experiments. The fatigue lives of silicone rubber dumbbell uniaxial tensile specimens, plane tensile specimens and cross biaxial tensile specimens were calculated. In order to take into account the power generation performance and fatigue life of silicone rubber composites, the total energy density (PI ) was used to evaluate the comprehensive properties of the composites. The results showed that through the PI evaluation, the strain energy density (W) was the largest and the ratio of cracking energy density to W was the smallest under equibiaxial tension. Silicone rubber may have the best comprehensive properties under equibiaxial tension.

参考文献/References

[1] Kornbluh G R. Dielectric elastomer artificial muscle for actuation, sensing, generation, and intelligent structures[J]. Materials & Processing Report,2004,19(4):216-223.
[2] Phung H, Canh T, Nguyen T D, et al. Tactile display with rigid coupling based on soft actuator[J]. Meccanica,2015,50(11):2825-2837.
[3] Jordi C, Michel S, Fink E. Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators[J]. Bioinspiration & Biomimetics,2010,5(2):026007.
[4] Mars W V, Fatemi A. A literature survey on fatigue analysis approaches for rubber[J]. International Journal of Fatigue,2002,24(9):949-961.
[5] W?hler A. W?hler’s experiments on the strength of metals[J]. Engineering,1867,4(11):160-161.
[6] Cadwell S M, Merrill R A, Sloman C M, et al. Dynamic fatigue life of rubber[J]. Industrial & Engineering Chemistry Analytical Edition,1940,12(2):304-315.
[7] Thomas A G. Rupture of rubber(Ⅱ): The strain concentration at an incision[J]. Journal of Polymer Science,1955,18(88):177-188.
[8] Lake G J, Lindley P B. Cut growth and fatigue of rubbers(Ⅱ): Experiments on a noncrystallizing rubber[J]. Journal of Applied Polymer Science,1964,8(2):707-721.
[9] Roberts B J, Benzies J B. The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulca-nizates[J]. Fatigue & Fracture of Engineering Materials & Structure,2006,21(10):1-13.
[10] Roach J F. Crack growth in elastomers under biaxial stresses[D]. Akron:University of Akron,1982.
[11] Mars W V. Multiaxial fatigue of rubber[D]. Toledo: University of Toledo, 2001.
[12] Busfield J, Jha V, Liang H, et al. Prediction of fatigue crack growth using finite element analysis techniques applied to three-dimensional elastomeric components[J]. Plastics Rubber and Composites,2013,34(8):349-356.
[13] Asare S, Busfield J J C. Fatigue life prediction of bonded rubber components at elevated temperature[J]. Plastics, Rubber and Composites,2011,40(4):194-200.
[14] 王小莉. 橡胶隔振器多轴疲劳寿命预测方法研究[D]. 广州:华南理工大学, 2014.

备注/Memo

备注/Memo:
2020年度国家基础加强计划。
更新日期/Last Update: 2022-03-15