[1] Kornbluh G R. Dielectric elastomer artificial muscle for actuation, sensing, generation, and intelligent structures[J]. Materials & Processing Report,2004,19(4):216-223.
[2] Phung H, Canh T, Nguyen T D, et al. Tactile display with rigid coupling based on soft actuator[J]. Meccanica,2015,50(11):2825-2837.
[3] Jordi C, Michel S, Fink E. Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators[J]. Bioinspiration & Biomimetics,2010,5(2):026007.
[4] Mars W V, Fatemi A. A literature survey on fatigue analysis approaches for rubber[J]. International Journal of Fatigue,2002,24(9):949-961.
[5] W?hler A. W?hler’s experiments on the strength of metals[J]. Engineering,1867,4(11):160-161.
[6] Cadwell S M, Merrill R A, Sloman C M, et al. Dynamic fatigue life of rubber[J]. Industrial & Engineering Chemistry Analytical Edition,1940,12(2):304-315.
[7] Thomas A G. Rupture of rubber(Ⅱ): The strain concentration at an incision[J]. Journal of Polymer Science,1955,18(88):177-188.
[8] Lake G J, Lindley P B. Cut growth and fatigue of rubbers(Ⅱ): Experiments on a noncrystallizing rubber[J]. Journal of Applied Polymer Science,1964,8(2):707-721.
[9] Roberts B J, Benzies J B. The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulca-nizates[J]. Fatigue & Fracture of Engineering Materials & Structure,2006,21(10):1-13.
[10] Roach J F. Crack growth in elastomers under biaxial stresses[D]. Akron:University of Akron,1982.
[11] Mars W V. Multiaxial fatigue of rubber[D]. Toledo: University of Toledo, 2001.
[12] Busfield J, Jha V, Liang H, et al. Prediction of fatigue crack growth using finite element analysis techniques applied to three-dimensional elastomeric components[J]. Plastics Rubber and Composites,2013,34(8):349-356.
[13] Asare S, Busfield J J C. Fatigue life prediction of bonded rubber components at elevated temperature[J]. Plastics, Rubber and Composites,2011,40(4):194-200.
[14] 王小莉. 橡胶隔振器多轴疲劳寿命预测方法研究[D]. 广州:华南理工大学, 2014.