|本期目录/Table of Contents|

[1]杨婉雨,尹 铫,白国锋.基于Havriliak-Negami模型的黏弹性材料吸声性能优化[J].合成橡胶工业,2021,6:438-442.
 YANG Wan-yu,YIN Yao,BAI Guo-feng.Optimization of sound absorption performance of viscoelastic material based on Havriliak-Negami model[J].China synthetic rubber industy,2021,6:438-442.
点击复制

基于Havriliak-Negami模型的黏弹性材料吸声性能优化(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2021年6期
页码:
438-442
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Optimization of sound absorption performance of viscoelastic material based on Havriliak-Negami model
文章编号:
1000-1255(2021)06-0438-05
作者:
杨婉雨12尹 铫1白国锋1
1.中国科学院声学研究所 噪声与振动重点实验室,北京 100190; 2.中国科学院大学 物理科学学院,北京 100049
Author(s):
YANG Wan-yu12 YIN Yao1 BAI Guo-feng1
(1.Key Laboratory of Noise and Vibration, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2.College of Physical, University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
Havriliak-Negami模型黏弹性材料吸声性能分层介质模型优化
Keywords:
Havriliak-Negami model viscoelastic material sound absorption performance layered medium model optimization
分类号:
TB 564
DOI:
10.19908/j.cnki.ISSN1000-1255.2021.06.0438
文献标识码:
A
摘要:
通过构建Havriliak-Negami模型并使用分层介质模型对黏弹性材料的动态力学参数进行优化,以提升其低频吸声性能。研究结果表明,在频率为1~6 kHz内、厚1 cm钢背衬条件下,厚5 cm橡胶材料的复杨氏模量优化后可实现平均吸声系数达到0.90。同等厚度条件下,具有不同驰豫时间的多层橡胶材料优化后可实现更加均匀的有效吸声。
Abstract:
The dynamic mechanical parameters of viscoelastic materials were optimized by the Havriliak-Negami (H-N) model and the layered medium model so as to improve the acoustic absorption performance of viscoelastic materials in low frequency.The results showed that in the range of 1 kHz and 6 kHz and under the condition of steel plate thickness of 1 cm, the complex Young′s modulus of the rubber material thickness of 5 cm could be optimized to achieve an average sound absorption coefficient of 0.9.Under the condition of the same thickness, multiple-layered rubber with different rela-xation times could be optimized to achieve more uniform and effective sound absorption performance.

参考文献/References

[1] 马大猷.现代声学理论基础[M].北京: 科学出版社,2004:228-230.
[2] 石勇,朱锡,李永清,等.水下目标吸声材料和结构的研究[J].声学技术,2006,25(5):505-512.
[3] 毛东兴,洪宗辉.环境噪声控制工程[M].第2版.北京: 高等教育出版社,2010:160-197.
[4] 石云霞,奚正平,汤慧萍,等.水下吸声材料的研究进展[J].材料导报,2010,24(1):49-52.
[5] 于利刚,李朝晖,王仁乾,等.含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析[J].物理学报,2013,62(6):280-288.
[6] 孙汉民.水下多层复合结构低频吸声特性研究[D].北京: 中国科学院声学研究所,2005.
[7] Scharnhorst K P.Optimal distribution of density and dilatation modulus in inhomogeneous layers[J].Journal of the Acoustical Society of America,1979,66(5):1526-1535.
[8] 杨雪,王源升,余红伟.梯度聚氨酯吸声性能的优化[J].武汉理工大学学报,2006(10):35-37.
[9] 白国锋,尹铫,周城光,等.黏弹性吸声材料复弹性模量优化研究[J].声学学报,2010,35(2):107-112.
[10] Madigosky W M,Lee G F,Niemiec J M.A method for modeling polymer viscoelastic data and the temperature shift function[J].Journal of the Acoustical Society of America,2006,119(6):3760-3765.
[11] Hasheminejad S M,Miri A K.Seismic isolation effect of lined circular tunnels with damping treatments[J].Earthquake Engineering & Engineering Vibration,2008,7(3):305-319.
[12] Hao Dong,Li Dongxu.Determination of dynamic mechanical properties of carbon black filled rubbers at wide frequency range using Havriliak-Negami model[J].European Journal of Mechanics (A):Solide,2015,53:303-310.
[13] Huang Yunke,Hou Hong,Oterkus S,et al.Mechanical and acoustic performance prediction model for elastomers in different environmental conditions[J].The Journal of the Acoustical Society of America,2018,144(4):2269-2280.
[14] 杨德林,章向明,王安稳,等.分层介质系统声透射问题的传递矩阵方法[J].海军工程大学学报,2000(3):28-30.
[15] 杜功焕,朱哲民,龚秀芬.声学基础[M].第3版.南京: 南京大学出版社,2012: 140-144.
[16] Hartmann B,Lee G F,Lee J D.Loss factor height and width limits for polymer relaxations[J].Journal of the Acoustical Society of America,1994,95(1):226-233.
[17] Coleman T F,Li Yuying.An interior trust region approach for nonlinear minimization subject to bounds[J].Siam Journal on Optimization,1996,6(2):418-445.

备注/Memo

备注/Memo:
收稿日期:2021-04-28;修订日期:2021-10-02。
作者简介:杨婉雨(1996—),女,江西南昌人,硕士研究生。主要从事水声材料的研究工作。
更新日期/Last Update: 2021-11-10